Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Front Immunol ; 15: 1385850, 2024.
Article En | MEDLINE | ID: mdl-38726014

Introduction: Chagas disease is a neglected parasitic disease caused by Trypanosoma cruzi. While most patients are asymptomatic, around 30% develop Chronic Chagasic Cardiomyopathy (CCC). Methods: Here, we employed high-dimensional flow cytometry to analyze CD4+ T and B cell compartments in patients during the chronic phase of Chagas disease, presenting the asymptomatic and mild or moderate/severe cardiac clinical forms. Results: Effector CD27-CD4+ T cells were expanded in both CCC groups, and only mild CCC patients showed higher frequencies of effector memory and T follicular helper (Tfh) cells than healthy donors (CTL) and asymptomatic patients. Unsupervised analysis confirmed these findings and further revealed the expansion of a specific subpopulation composed of Tfh, transitional, and central memory CD4+ T cells bearing a phenotype associated with strong activation, differentiation, and exhaustion in patients with mild but not moderate/severe CCC. In contrast, patients with mild and moderate/severe CCC had lower frequencies of CD4+ T cells expressing lower levels of activation markers, suggesting resting status, than CTL. Regarding the B cell compartment, no alterations were found in naïve CD21-, memory cells expressing IgM or IgD, marginal zone, and plasma cells in patients with Chagas disease. However, expansion of class-switched activated and atypical memory B cells was observed in all clinical forms, and more substantially in mild CCC patients. Discussion: Taken together, our results showed that T. cruzi infection triggers changes in CD4+ T and B cell compartments that are more pronounced in the mild CCC clinical form, suggesting an orchestrated cellular communication during Chagas disease. Conclusion: Overall, these findings reinforce the heterogeneity and complexity of the immune response in patients with chronic Chagas disease and may provide new insights into disease pathology and potential markers to guide clinical decisions.


CD4-Positive T-Lymphocytes , Chagas Cardiomyopathy , Humans , Chagas Cardiomyopathy/immunology , Male , Middle Aged , Female , CD4-Positive T-Lymphocytes/immunology , Adult , B-Lymphocytes/immunology , Trypanosoma cruzi/immunology , Chronic Disease , Aged , Lymphocyte Activation/immunology
2.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38590172

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Glycoproteins , Humans , Glycoproteins/metabolism , Glycoproteins/chemistry , Proteomics/methods , Blood Group Antigens/metabolism , Blood Group Antigens/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Fucose/metabolism , Fucose/chemistry , Phenotype , Glycosylation , ABO Blood-Group System/metabolism , ABO Blood-Group System/chemistry
4.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Article En | MEDLINE | ID: mdl-38321182

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Caliciviridae Infections , Norovirus , Vaccines , Humans , Animals , Macaca mulatta , Intestine, Small
5.
J Transl Med ; 20(1): 551, 2022 11 30.
Article En | MEDLINE | ID: mdl-36447264

Chagas disease is a neglected tropical disease in Latin America and an imported emerging disease worldwide. Chronic Chagas disease cardiomyopathy (CCC) is the most prominent clinical form and can lead to heart failure, thromboembolism, and sudden death. While previous reports have supported a role for CD4+ T lymphocytes in the pathogenesis of CCC a comprehensive analysis of these cells during different clinical forms is lacking. Here, we used high-dimensional flow cytometry to assess the diversity of circulating CD4+ T cells in patients with distinct clinical forms. We found increased frequencies of CD4+CD69+ T cells in patients compared to controls. CD39+ regulatory T cells, represented by mesocluster 6 were reduced in mild CCC patients compared to controls. Cytotoxic CD4+ T cells co-expressing granzyme B and perforin were expanded in patients with Chagas disease and were higher in patients with mild CCC compared to controls. Furthermore, patients with mild CCC displayed higher frequencies of multifunctional effector memory CD4+ T cells. Our results demonstrate an expansion in activated CD4+ T cells and a decrease in a functional subset of regulatory T cells associated with the onset of Chagas cardiomyopathy, suggesting their role in the establishment of cardiac lesions and as potential biomarkers for disease aggravation.


Cardiomyopathies , Chagas Disease , Heart Failure , Humans , Lymphocyte Count , T-Lymphocytes, Regulatory , Chagas Disease/complications
6.
J Biol Chem ; 295(47): 15974-15987, 2020 11 20.
Article En | MEDLINE | ID: mdl-32913124

The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene-dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.


Blood Group Antigens/metabolism , Caliciviridae Infections/metabolism , Glycosphingolipids/metabolism , Intestinal Mucosa/metabolism , Norovirus/metabolism , Organoids/metabolism , Virus Attachment , Caliciviridae Infections/pathology , Humans , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Organoids/pathology , Organoids/virology
7.
Front Immunol ; 9: 2673, 2018.
Article En | MEDLINE | ID: mdl-30505309

Even though more than 30 years have passed since the eradication of smallpox, high titers of smallpox-specific antibodies are still detected in the blood of subjects vaccinated in childhood. In fact, smallpox-specific antibody levels are maintained in serum for more than 70 years. The generation of life-long immunity against infectious diseases such as smallpox and measles has been thoroughly documented. Although the mechanisms behind high persisting antibody titers in the absence of the causative agent are still unclear, long lived plasma cells (LLPCs) play an important role. Most of the current knowledge on LLPCs is based on experiments performed in mouse models, although the amount of data derived from human studies is increasing. As the results from mouse models are often directly extrapolated to humans, it is important to keep in mind that there are differences. These are not only the obvious such as the life span but there are also anatomical differences, for instance the adiposity of the bone marrow (BM) where LLPCs reside. Whether these differences have an effect on the function of the immune system, and in particular on LLPCs, are still unknown. In this review, we will briefly discuss current knowledge of LLPCs, comparing mice and humans.


Plasma Cells/cytology , Plasma Cells/immunology , Adiposity/physiology , Animals , Antibodies, Monoclonal/therapeutic use , Bone Marrow/immunology , Germinal Center/immunology , Humans , Interleukin-5/physiology , Interleukin-6/physiology , Longevity/physiology , Mice , Receptors, Cell Surface , Transcription Factors
8.
J Phys Chem Lett ; 9(9): 2278-2284, 2018 May 03.
Article En | MEDLINE | ID: mdl-29624391

Quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy have been used to investigate binding of norovirus-like particles (noroVLPs) to a supported (phospho)lipid bilayer (SLB) containing a few percent of H or B type 1 glycosphingolipid (GSL) receptors. Although neither of these GSLs spontaneously form domains, noroVLPs were observed to form micron-sized clusters containing typically up to about 30 VLP copies, especially for B type 1, which is a higher-affinity receptor. This novel finding is explained by proposing a model implying that VLP-induced membrane deformation promotes VLP clustering, a hypothesis that was further supported by observing that functionalized gold nanoparticles were able to locally induce SLB deformation. Because similar effects are likely possible also at cellular membranes, our findings are interesting beyond a pure biophysicochemical perspective as they shed new light on what may happen during receptor-mediated uptake of viruses as well as nanocarriers in drug delivery.


Glycosphingolipids/chemistry , Lipid Bilayers/metabolism , Metal Nanoparticles/chemistry , Norovirus/chemistry , Carbocyanines/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Gold/chemistry , Humans , Lipid Bilayers/chemistry , Microscopy, Fluorescence , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism
...